Planned seminars

Europe/Lisbon Unusual schedule

Ralph Blumenhagen, Max-Planck Institute Garching

It has been recently suggested that the strong Emergence Proposal is realized in equi-dimensional M-theory limits by integrating out all light towers of states with a typical mass scale not larger than the species scale, i.e the eleventh dimensional Planck mass. Within the BPS sector, these are transverse M2- and M5-branes, that can be wrapped and particle-like, carrying Kaluza-Klein momentum along the compact directions. We provide additional evidence for this picture by revisiting and investigating further the computation of $R^4$-interactions in M-theory à la Green-Gutperle-Vanhove. A central aspect is a novel UV-regularization of Schwinger-like integrals, whose actual meaning and power we clarify by first applying it to string perturbation theory. We consider then toroidal compactifications of M-theory and provide evidence that integrating out all light towers of states via Schwinger-like integrals thus regularized yields the complete result for $R^4$-interactions. In particular, this includes terms that are tree-level, one-loop and space-time instanton corrections from the weakly coupled point of view. Finally, we comment on the conceptual difference of our approach to earlier closely related work by Kiritsis-Pioline and Obers-Pioline, and conjecture a correspondence between two types of constrained Eisenstein series.

Europe/Lisbon Unusual schedule

Yiyang Jia, Weizmann Institute of Science

We study transitions from chaotic to integrable Hamiltonians in the double scaled SYK and $p$-spin systems. The dynamics of our models is described by chord diagrams with two species. We begin by developing a path integral formalism of coarse graining chord diagrams with a single species of chords, which has the same equations of motion as the bi-local Liouville action, yet appears otherwise to be different and in particular well defined. We then develop a similar formalism for two types of chords, allowing us to study different types of deformations of double scaled SYK and in particular a deformation by an integrable Hamiltonian. The system has two distinct thermodynamic phases: one is continuously connected to the chaotic SYK Hamiltonian, the other is continuously connected to the integrable Hamiltonian, separated at low temperature by a first order phase transition.