Europe/Lisbon
Online

Josephine Suh, Kavli Institute, University of California, Santa Barbara
Dynamics of black holes in Jackiw-Teitelboim gravity

We present a general solution for correlators of external boundary operators in black hole states of Jackiw-Teitelboim gravity. We use the Hilbert space constructed using the particle-with-spin interpretation of the Jackiw-Teitelboim action, which consists of wavefunctions defined on Lorentzian $AdS_2$. The density of states of the gravitational system appears in the amplitude for a boundary particle to emit and reabsorb matter. Up to self-interactions of matter, a general correlator can be reduced in an energy basis to a product of amplitudes for interactions and Wilson polynomials mapping between boundary and bulk interactions.