Supersymmetric D-branes supported on the complex two-dimensional base $S$ of the local Calabi-Yau threefold $K_S$ are described by semi-stable coherent sheaves on $S$. Under suitable conditions, the BPS indices counting these objects (known as generalized Donaldson-Thomas invariants) coincide with the Vafa-Witten invariants of $S$ (which encode the Betti numbers of the moduli space of semi-stable sheaves). For surfaces which admit a strong collection of exceptional sheaves, we develop a general method for computing these invariants by exploiting the isomorphism between the derived category of coherent sheaves and the derived category of representations of a suitable quiver with potential $(Q,W)$ constructed from the exceptional collection. We spell out the dictionary between the Chern class $\gamma$ and polarization $J$ on $S$ vs. the dimension vector $\vec N$ and stability parameters $\vec\zeta$ on the quiver side. For all examples that we consider, which include all del Pezzo and Hirzebruch surfaces, we find that the BPS indices $\Omega_\star(\gamma)$ at the attractor point (or self-stability condition) vanish, except for dimension vectors corresponding to simple representations and pure D0-branes. This opens up the possibility to compute the BPS indices in any chamber using either the flow tree or the Coulomb branch formula. In all cases we find precise agreement with independent computations of Vafa-Witten invariants based on wall-crossing and blow-up formulae. This agreement suggests that i) generating functions of DT invariants for a large class of quivers coming from strong exceptional collections are mock modular functions of higher depth and ii) non-trivial single-centered black holes and scaling solutions do not exist quantum mechanically in such local Calabi-Yau geometries.

We examine various properties of double field theory and the doubled string sigma model in the context of geometric quantisation. In particular we look at T-duality as the symplectic transformation related to an alternative choice of polarisation in the construction of the quantum bundle for the string. Following this perspective we adopt a variety of techniques from geometric quantisation to study the doubled space. One application is the construction of the double coherent state that provides the shortest distance in any duality frame and a stringy deformed Fourier transform.

One of the attractive ideas of building a quantum computer is based on the topological properties of matter. In such a realization, the Topological Quantum Field Theories (TQFT) become the main language to describe the functioning of the quantum computer. In my talk I will discuss some basic elements of the topological quantum computing. I will start from a description of TQFTs as instances of quantum mechanics in terms of category theory. Then I will review the notion of quantum entanglement in this context. As a further preparation to quantum computations I will discuss the question of complexity of quantum algorithms and quantum states. I will introduce a complexity measure for a simple class of the "torus knot states" and review some alternative recent measures and approaches from the literature.

We study difference equations which are obtained from the asymptotic expansion of topological string theory on the deformed and the resolved conifold geometries as well as for topological string theory on arbitrary families of Calabi-Yau manifolds near generic singularities at finite distance in the moduli space. Analytic solutions in the topological string coupling to these equations are found. The solutions are given by known special functions and can be used to extract the strong coupling expansion as well as the non-perturbative content. The strong coupling expansions show the characteristics of D-brane and NS5-brane contributions, this is illustrated for the quintic Calabi-Yau threefold. For the resolved conifold, an expression involving both the Gopakumar-Vafa resummation as well as the refined topological string in the Nekrasov-Shatashvili limit is obtained and compared to expected results in the literature. Furthermore, a precise relation between the non-perturbative partition function of topological strings and the generating function of non-commutative Donaldson-Thomas invariants is given. Moreover, the expansion of the topological string on the resolved conifold near its singular small volume locus is studied. Exact expressions for the leading singular term as well as the regular terms in this expansion are provided and proved. The constant term of this expansion turns out to be the known Gromov-Witten constant map contribution.

We propose that finite cutoff regions of holographic spacetimes represent quantum circuits that map between boundary states at different times and Wilsonian cutoffs, and that the complexity of those quantum circuits is given by the gravitational action. The optimal circuit minimizes the gravitational action. This is a generalization of both the "complexity equals volume" conjecture to unoptimized circuits, and path integral optimization to finite cutoffs. Using tools from holographic $T\bar{T}$, we find that surfaces of constant scalar curvature play a special role in optimizing quantum circuits. We also find an interesting connection of our proposal to kinematic space, and discuss possible circuit representations and gate counting interpretations of the gravitational action. Based on arXiv:2101.01185.

Scalar unitary representations of the isometry group of d-dimensional de Sitter space $SO(1,d)$ are labeled by their conformal weights $\Delta$. A salient feature of de Sitter space is that scalar fields with sufficiently large mass compared to the de Sitter scale $1/l$ have complex conformal weights, and physical modes of these fields fall into the unitary continuous principal series representation of $SO(1,d)$. Our goal is to study these representations in $d=2$, where the relevant group is $SL(2,R)$. We show that the generators of the isometry group of $dS_2$ acting on a massive scalar field reproduce the quantum mechanical model introduced by de Alfaro, Fubini and Furlan (DFF) in the early/late time limit. Motivated by the ambient $dS_2$ construction, we review in detail how the DFF model must be altered in order to accommodate the principal series representation. We point out a difficulty in writing down a classical Lagrangian for this model, whereas the canonical Hamiltonian formulation avoids any problem. We speculate on the meaning of the various de Sitter invariant vacua from the point of view of this toy model and discuss some potential generalizations.

“G-algebroids” are natural extension of Lie and Courant algebroids that give a unified picture of the symmetries that underlie generalised and exceptional geometry as well as new “non-exact” versions. We analyse their structure in the exceptional case, and translate the problem of finding maximally supersymmetric consistent truncations to a relatively simple algebraic condition. We then show how Poisson-Lie U-duality is encoded in this framework and prove, in particular, that it is compatible with the supergravity equations of motion.

We investigate the exact-WKB analysis for quantum mechanics in a periodic potential, with $N $ minima on $S^{1}$. We describe the Stokes graphs of a general potential problem as a network of Airy-type or degenerate Weber-type building blocks, and provide a dictionary between the two. The two formulations are equivalent, but with their own pros and cons. Exact WKB produces the quantization condition consistent with the known conjectures and mixed anomaly. The quantization condition for the case of $N$-minima on the circle factorizes over the Hilbert sub-spaces labeled by discrete theta angle (or Bloch momenta), and is consistent with 't Hooft anomaly for even $N$ and global inconsistency for odd $N$. By using Delabaere Dillinger-Pham formula, we prove that the resurgent structure is closed in these Hilbert subspaces, built on discrete theta vacua, and by a transformation, this implies that fixed topological sectors (columns of resurgence triangle) are also closed under resurgence.

This talk is based on:

On exact-WKB analysis, resurgent structure, and quantization conditions, N. Sueishi, S. K., T. Misumi, and M. Ünsal, arXiv:2008.00379.

Exact-WKB, complete resurgent structure, and mixed anomaly in quantum mechanics on $S^1$, N. Sueishi, S.K., T. Misumi, and M. Ünsal, arXiv.2103.06586