HARMRAD
Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure. Black hole (BH) accretion flows and jets are dynamic hot relativistic magnetized plasma flows whose radiative opacity can significantly affect flow structure and behaviour. We describe a numerical scheme, tests, and an astrophysically relevant application using the M1 radiation closure within a new 3D general relativistic radiation magnetohydrodynamics (GRRMHD) massively parallel code called HARMRAD. Our 3D GRRMHD simulation of super-Eddington accretion (about 20 times Eddington) on to a rapidly rotating BH (dimensionless spin j = 0.9375) shows sustained non-axisymmemtric disc turbulence, a persistent electromagnetic jet driven by the Blandford–Znajek effect, a disc wind, and a polar radiation jet. The total accretion efficiency is of the order of 20 per cent, the large-scale electromagnetic jet efficiency is of the order of 10 per cent, the disc wind efficiency is less than 1 per cent, and the total radiative efficiency remains low at only of the order of 1 per cent (of order the Eddington luminosity). However, the radiation jet and the electromagnetic jet both emerge from a geometrically beamed polar region, with super-Eddington isotropic equivalent luminosities. Such simulations with HARMRAD can enlighten the role of BH spin versus discs in launching jets, help determine the origin of spectral and temporal states in X-ray binaries, help to understand how tidal disruption events work, provide an accurate horizon-scale flow structure for M87 and other active galactic nuclei (AGN), and isolate whether AGN feedback is driven by radiation or by an electromagnetic, thermal, or kinetic wind/jet. For example, the low radiative efficiency and weak BH spin-down rate from our simulation suggest that BH growth over cosmological times to billions of solar masses by redshifts of z ∼ 6–8 is achievable even with rapidly rotating BHs and 10 M⊙ BH seeds.
Keywords for this software
References in zbMATH (referenced in 4 articles )
Showing results 1 to 4 of 4.
Sorted by year (- Balsara, Dinshaw S.; Kim, Jinho: A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector (2016)
- Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.: GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes (2016)
- Meliani, Z.; Vincent, F. H.; Grandclément, P.; Gourgoulhon, E.; Monceau-Baroux, R.; Straub, O.: Circular geodesics and thick tori around rotating boson stars (2015)
- Zanotti, O.; Pugliese, D.: Von Zeipel’s theorem for a magnetized circular flow around a compact object (2015)