Paul Richmond, University of Oxford
Localization on Three-Manifolds

We consider supersymmetric gauge theories on Riemannian three-manifolds with the topology of a three-sphere. The three-manifold is always equipped with an almost contact structure and an associated Reeb vector field. We show that the partition function depends only on this vector field, giving an explicit expression in terms of the double sine function. In the large \(N\) limit our formula agrees with a recently discovered two-parameter family of dual supergravity solutions. We also explain how our results may be applied to prove vortex-antivortex factorization. Finally, we comment on the extension of our results to three-manifolds with non-trivial fundamental group.