Valentin Reys, University of Milano-Bicocca
Exact entropy of $1/4$-BPS black holes in $N=4$ supergravity and the mixed Rademacher expansion

In this talk, I will present some recent developments in computing the exact entropy of dyonic $1/4$-BPS black holes in four-dimensional $N=4$ supergravity theories originating from Type IIB string theory compactified on $K3 \times T_2$. The exact entropy is obtained in the Quantum Entropy Function formalism by means of supersymmetric localization techniques. The result can then be compared to the degeneracy of the brane/momentum system making up the black hole in the string theory picture. Such degeneracies are given by the Fourier coefficients of so-called mock Jacobi forms, a concept I will review. An exact formula for the coefficients can be obtained via a suitable generalization of the Hardy-Ramanujan-Rademacher circle method which takes into account the mock character of the counting functions. After presenting these results, I will outline some discrepancies (at sub-leading order in the charges) between the supergravity result for the exact entropy and the degeneracies of the brane/momentum system, and point to some aspects of the supergravity calculations which should be examined in more detail if one hopes to get a complete matching.